
Affine processes under parameter uncertainty

Albert-Ludwigs-Universität Freiburg

Tolulope Fadina, Ariel Neufeld, Thorsten Schmidt
Abteilung für Mathematische Stochastik

www.stochastik.uni-freiburg.de
tolulope.fadina@stochastik.uni-freiburg.de
Financial support by Carl-Zeiss-Stiftung is appreciated
Robust Techniques in Finance Oxford, Sep 2018



Motivation

Introduction
Affine processes under model risk

Dynamic programming

The Kolmogorov equation

Examples

Robust Techniques in Finance Oxford, Sep 2018– Affine processes under parameter uncertainty 2 / 28



Why non-linear affine processes?

Affine processes have been considered in many variants (in
particular in interest rate and credit risk markets)
In applications, the parameters of those processes have to be
estimated, thus leading to a certain amount of model risk
What can be done to incorporate this model risk into our affine
models
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Philosophical aspects

Uncertainty can be motivated in a number of situations:
1 We have no idea about the distribution of the future evolution of

X , except some rough guesses about intervals of parameters
2 We have some past data and are able to estimate the

parameters, but this has uncertainty→ we could use confidence
intervals for the parameters

3 We believe that the future evolution is close to the observed
evolution, but not exactly like it.

Where do we place ourselves? Certainly, this depends on the task we
want to achieve!
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Introduction

Consider the state space X = R or X = R+ (canonical state
space)
A (time-homogeneous) Markov processes X is called affine, if

E[eiuXT |Ft ] = eφ (T−t,u)+ψ(T−t,u)Xt

for all u ∈ iR, 0≤ t ≤ T with appropriate functions φ and ψ.
Then, X = Xx is the strong solution of

dXt = (b0 +b1Xt)dt +
√
a0 +a1Xt dWt , X0 = x. (1)

where the parameter vector θ := (b0,b1,a0,a1)> satisfies certain
admissibility conditions. Here, W is a standard Brownian motion.
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Framework

Let Ω = C([0,T ];R) be the canonical space of continuous paths.
We endow Ω with the topology of locally uniform convergence
and denote by F its Borel σ -field.

Let X be the canonical process Xt(ω) = ωt , and let F = (Ft)t≥0
with Ft = σ (Xs,0≤ s≤ t) be the (raw) filtration generated by X .
Denote by P(Ω) the Polish space of all probability measures on
Ω equipped with the topology of weak convergence.
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X is a continuous P-F-semimartingale, if there exist B = BP and
M = MP satisfying B0 = M0 = 0 such that

X = X0 +B+M.

Here B has paths of (locally) finite variation P-a.s. and M is a
P-F-local martingale.

We focus on semimartingales where there exist predictable
processes βP and α ≥ 0, such that

BP =
∫ ·
0

β
P
s ds, C =

∫ ·
0

αsds.

Robust Techniques in Finance Oxford, Sep 2018– Affine processes under parameter uncertainty 7 / 28



X is a continuous P-F-semimartingale, if there exist B = BP and
M = MP satisfying B0 = M0 = 0 such that

X = X0 +B+M.

Here B has paths of (locally) finite variation P-a.s. and M is a
P-F-local martingale.
We focus on semimartingales where there exist predictable
processes βP and α ≥ 0, such that

BP =
∫ ·
0

β
P
s ds, C =

∫ ·
0

αsds.

Robust Techniques in Finance Oxford, Sep 2018– Affine processes under parameter uncertainty 7 / 28



We denote

Pac
sem = {P ∈P(Ω) |X is a (P,F)-semimartingale with a.c. characteristics} .

We will consider model risk in the sense that there is uncertainty
on the parameter vector θ = (b0,b1,a0,a1) of the affine process.
Assume there is additional information on bounds on the
parameter vector θ , denoted by

bi , b̄i , ai , āi

leading to

Θ = [b0, b̄0]× [b1, b̄1]× [a0, ā0]× [a1, ā1]. (2)
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We are interested in the intervals generated by the associated
affine functions: let

b∗(x) := {b0 +b1x : (b0,b1) ∈ [b0, b̄0]× [b1, b̄1]},
a∗(x) := {a0 +a1x+ : (a0,a1) ∈ [a0, ā0]× [a1, ā1]}

(3)

for x ∈ R.
Due to the nice structure of Θ the sets are always intervals:
indeed,

b∗(x) = [b0 + (b11{x≥0} + b̄11{x<0})x, b̄0 + (b̄11{x≥0} +b11{x<0})x],
a∗(x) = [a0 +a1x+, ā0 + ā1x+].

(4)
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Definition
We call P affine-dominated by Θ, if (βP,α) satisfy

β
P
s ∈ b∗(Xs), and αs ∈ a∗(Xs), (5)

for dt-almost all s ∈ [0,T ] for P-almost all ω ∈Ω.

Definition
A non-linear affine process is a family of semimartingale laws
P ∈Pac

sem such that
(i) P(X0 = x) = 1,
(ii) P is affine-dominated by Θ.

Denote by A (x,Θ) those semimartingale laws P ∈Pac
sem, satisfying

P(X0 = x) = 1 and being dominated by Θ.
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The state space O will be either R, R≥0 or R>0.
O depends on the choice of Θ.
A family of non-linear affine processes (A (x,Θ))x∈O with state
space O is called proper, if either a0 > 0 holds, or a0 = ā0 = 0
and b0 ≥ ā1/2 > 0.

Proposition

Consider x > 0 and assume that a0 = ā0 = 0 and that b0 ≥ ā1/2 > 0.
Then for any P ∈A (x,Θ) it holds that

P(Xt > 0, 0≤ t ≤ T ) = 1.
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Dynamic programming

We utilize the general results on dynamic programming obtained
in Nutz & van Handel (2013) and El Karoui & Tan (2013).

Definition (Conditional non-linear affine processes)

Denote by A (t,x,Θ) those semimartingale laws P ∈Pac
sem such that

(i) P(Xs = x,0≤ s≤ t) = 1,
(ii) P is affine-dominated on (t,T ] by Θ.
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Proposition

Consider a proper family of non-linear affine processes with state
space O. For any (t,x) ∈ [0,T ]×O and any stopping time τ taking
values in [t,T ], we obtain

v(t,x) = sup
P∈A (t,x,Θ)

EP[v(τ,Xτ )
]
.
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The Kolmogorov equation

Consider the state space O which will be either R, R≥0 or R>0.
Fix ψ : O → R.
The affine process X given in Equation (1) is uniquely
characterized by its infinitesimal generator,

L θ = (b0 +b1x)∂x + 1
2(a0 +a1x)∂xx .

We study the non-linear PDE{
−∂tv(t,x)−supθ∈Θ L θv(t,x) = 0 on [0,T )×O

v(T ,x) = ψ(x) x ∈ O.
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Theorem
Consider a proper family of non-linear affine processes with state
space O and let ψ : O → R be Lipschitz continuous. Then

v(t,x) := sup
P∈A (t,x,Θ)

EP[
ψ(XT )

]
, x ∈ O

is a viscosity solution of the non-linear PDE above.
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Existence and Uniqueness

Existence follows from the standard argument in stochastic
control.

Proposition (Uniqueness)

Assume that ψ is Lipschitz-continuous. Then v(t,x) is a viscosity
solution of (6) If in addition,
(i) a0 > 0 and O = R, then v(t,x) is the unique solution of (6), or
(ii) if a0 = ā0 = 0, b0 ≥ ā1/2 > 0 and O = R>0, then v(t,x) is the only

viscosity solution, such that

sup
(t,x)∈[0,T ]×R>0

|v(t,x)|
1+x < ∞.
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Motivating example

Non-linear Vasiček-CIR model with state space R and
a1 ∈ [0,a1], and a0 ∈ [0,a0]
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An Itô formula for non-linear affine processes

Proposition

Let A (x,Θ) be a non-linear affine process and F ∈ C2. Then, for
every P ∈A (x,Θ), Y = F (X ) is a P-semimartingale with differential
characteristics α̃ and β̃ satisfying

β̃
P
s ∈ bF (Xs), α̃s ∈ aF (Xs).

We define the two interval-valued functions aF and bF by

aF (x) := [(F ′(x))2(a0 +a1x+), (F ′(x))2(ā0 + ā1x+)] (6)

and

bF (x) :=
[

inf
(β ,α)∈b∗(x)×a∗(x)

(
F ′(x)β + 1

2F
′′(x)α

)
, sup

(β ,α)∈b∗(x)×a∗(x)

(
F ′(x)β + 1

2F
′′(x)α

)]
.

(7)
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Assume there exist set-valued functions ã and b̃, such that for all
x ∈ O,

aF (x) = ã(F (x)), and bF (x) = b̃(F (x)). (8)

For example, if F is invertible on O, then condition (8) holds
which will be the case in the below example.
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Definition
Consider F ∈ C2(R) and a non-linear affine process A (x,Θ) and
assume that condition (8) holds. The non-linear process F (A (x,Θ)) is
a family of semimartingale laws P ∈Pac

sem with differential
semimartingale characteristics (βP,α) such that
(i) P(X0 = F (x)) = 1,
(ii) (βP,α) satisfy

β
P
s ∈ b̃(Xs), and αs ∈ ã(Xs), (9)

for dP⊗dt-almost all (ω,s) ∈Ω× (0,T ].
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Proposition

Let F ∈ C2 such that F ′(x) 6= 0 for all x in O. Then

F (A (x,Θ)) =
{
P ◦ (F (X ))−1 : P ∈A (x,Θ)}.
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Example

Let A (x,Θ) be a non-linear Vasiček model satisfying b̄0 = b0 = 0, and
Y = F (X ) = X2. We apply the result (Itô) above and calculate the
non-linear process F (A (x,Θ)). First, note that since F ′′ = 2> 0,

bF (x) = [2x2b1 +a0,2x2b̄1 + ā0]

and aF (x) = [4x2a0,4x2ā0]. Thus, F (X ) is a non-linear CIR process.
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Affine term structure model

Uncertainty on the default intensity, recovery rate - (Fadina &
Schmidt 2018).

Proposition

Assume that f is Lipschitz-continuous. Then F (t,x) is a viscosity
solution of

∂tF (t,x)−sup
θ∈θ

L θF (t,x) +xF (t,x) = 0, (10)

with F (T ,x) = f (x).
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The dynamic programming yields for any stopping time τ taking
values in [t,T ] that

F (T − t,x) = sup
P∈A (t,x,Θ)

EP
[
e−

∫
τ
t XsdsF (T − τ,Xτ )

]
.
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The term-structure equation now allows to obtain the bond prices by
considering the pay-off f (XT ) = 1. Here, upper bond prices under the
non-linear affine term structure model, x ∈ O, are given by

p̄(t,T ,x) = sup
P∈A (t,x,Θ)

EP
[
e−

∫ T
t Xsds|Xt = x

]
, 0≤ t ≤ T .
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Affine processes under parameter uncertainty
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Preprint is available on arxiv.org/abs/1806.02912
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Example 2 - The non-linear affine model
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Thank you for your attention.
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